

Atmospheric Instrumentation:

Airborne measurements of chemical composition

Elliot Atlas
Dept. of Atmospheric Sciences
Rosenstiel School of Marine and Atmospheric Science
University of Miami
Miami, FL USA

Outline

- Measurement fundamentals
 - Calibration, quality control, and intercomparison
- Research from airborne platforms
 - Examples of research aircraft
- Instrumentation for chemical composition
 - Gas phase
 - Aerosol phase
 - Remote vs. in-situ
- Examples of research missions
- Group design of mission plans

Challenges

- The atmosphere has a complex chemical composition with large variability
 - Potentially large range of concentrations
 - Sufficient sensitivity for ambient conditions
 - Sufficient linearity to cover range
 - Variability over space and time
 - Appropriate time resolution of measurements
 - Sufficient precision to identify relevant variability
 - Need selective techniques to identify and quantify
 - Potential for interferences and artifacts
 - Stable, well characterized standard scales
 - Ability to compare and combine data

Challenges

- Understanding complex chemical processes requires complementary measurements of excellent quality
- Measurement precision, accuracy, and limitations needs to be clearly communicated to users.

Measurements - Basics

- Specificity
- Linearity
- Range
- Limit of Detection
- Limit of Quantitation
- Precision
- Accuracy

Measurements - Basics

Limits of detection and quantitation

LOD

- ✓ Lowest amount of analyte in a sample that can be detected but not necessarily quantitated.
- ✓ Estimated by Signal to Noise Ratio of 3:1.

LOQ

- ✓ Lowest amount of analyte in a sample that can be quantified with suitable accuracy and precision.
- ✓ Estimated by Signal to Noise Ratio of 10:1.

Limits of detection and quantitation

Limits of detection and quantitation

LOQ, LOD and SNR

Limit of Quantitation

Limit of Detection

Signal to Noise Ratio

Calibration

From B. Hall

Calibration – Standard scales

Species	Previous Scale	Current Scale	Note	N	Range
CFC-12	2001	2008	1	15	150-650 ppt
CFC-11	1992	2016	5	100-260 ppt	
CFC-113	2003	no change	10	20-110 ppt	
CH3CCI3	2003	no change	10	10-180 ppt	
CCI4	1996	2008	2	7	25-150 ppt
halon 1211	1996	2006	3	5	3-7 ppt
halon 1301	1990	2006	4	6	2-5 ppt
HCFC-22	1992	2006	5	9	75-200 ppt
HCFC-141b	1994	no change	3	5-50 ppt	
HCFC-142b	1994	no change	3	5-50 ppt	
HFC-134a	1995	no change	2	5-10 ppt	

Calibration – Standard drift

NOAA CO standard tank evaluation

Measurements – Precision/ Accuracy

Accuracy = high
Precision = high
(a)

Accuracy = low
Precision = high
(b)

Accuracy = high
Precision = low
(c)

Accuracy = low
Precision = low
(d)

Measurements - Comparisons

Figure 4. Inter-comparison between PTR-MS and iWAS/GCMS.

From Warneke et al., AMT, 2016

Figure 3. NO_2 inter-comparison between P-CL, CRDS and ACES instruments and ozone inter-comparison between P-CL and CRDS.

Measurements - Comparisons

Measurements - Comparisons

HR-ToF-AMS comparison

Measurements - Comparisons

Time Series of Nitrate Mass Concentrations

Measurements - Comparisons

Measurements from aircraft

- Pressure variation
 - 1000 -70 hPa

Measurements from aircraft

- Pressure variation
 - 1000 -70 hPa
- Temperature
 - $<-70^{\circ}\text{C}$ - $>30^{\circ}\text{C}$

Measurements from aircraft

- Pressure variation
 - 1000 -70 hPa
- Temperature
 - $<-70^{\circ}\text{C}$ - $>30^{\circ}\text{C}$
- Water vapor
 - $<2 \text{ ppm}$ - $>3\%$
 - 4 orders of magnitude

Measurements from aircraft

- Motion!
 - Air speeds
 - $170 - 240 \text{ m/sec}$
 - $5 \text{ sec} = 1 \text{ km}$
 - $1 \text{ min} = 12 \text{ km}$
 - $5 \text{ min} = 60 \text{ km}$
- Vertical profiles
 - 500 m/min

Measurements - Inlets

Research Aircraft – NASA DC-8

<1000 – 42,000 feet
5400 nmi range
30,000 lbs of equipment
45 scientists and crew

Research Aircraft – NASA ER-2

**Up to 70,000 ft
2600 lb payload
0 scientists
1 pilot**

Research Aircraft – NASA Global Hawk

Up to 65000 ft
Payload > 1500 lbs
Duration ~ 30 hrs
0 pilots (on board)
0 scientists (on board)

Research Aircraft – NSF/NCAR C-130

Research Aircraft – NSF/NCAR GV

**Up to ~50,000 ft
6000 lb payload
7000 mi. range
2 pilots, 1 engineer, 4 – 6 scientists**

Research Aircraft – NASA WB-57

>60,000 ft altitude
2500 nmi range
9700 lbs (including pallets and pods)
1 pilot, 1 engineer

Preparing instruments : C-130

Preparing instruments : DC8

KORUS - AQ

Preparing instruments : GV

Preparing instruments : WB-57

Instrumentation for chemical composition measurements

In-situ

Gas phase

Stable

Reactive

Aerosol phase

Size
differentiated

Single particle
or bulk

Remote sensing

Lidars, DOAS

Gas phase composition

Stable

Reactive

- Ozone
- CO, CO₂, CH₄
- NO_x, NO_y, PAN, HNO₃, ...
- NH₃
- VOC
- SO₂
- H₂O₂, CH₃OOH
- CH₂O

- OH, HO₂
- RO₂

In-situ techniques

- IR Spectroscopy – Formaldehyde, CO, CO₂
- Chemiluminescence – NO_{x,y}, O₃
- Mass Spectrometry: e.g., OH – CIMS (chemical ionization mass spectrometry), PTR-MS, GC-MS
- Laser induced fluorescence – LIF: OH, NO₂, PANs
- Laser Absorption Spectroscopy – many
- Cavity Ring Down Spectroscopy - many

Review of Spectroscopy

- Identify and quantify species based on their interactions with energy
 - Energy: **radiation**, acoustic waves, beams of particles such as ions and electrons
- The energy difference b/w states is unique for every species!
- Quantum theory:
 - Atoms, ions, and molecules exist in discrete states, characterized by definite amounts of **E**
 - When a species changes its state, it absorbs or emits an amount of energy *exactly* equal to the energy difference between states, $E=h\Delta\nu$

Review of spectroscopy

- **Absorbance:**

- Select frequencies are removed from the incident light by absorption.
- Absorption promotes molecules from ground state to an excited state.
- Analytical techniques: IR and UV-VIS

- **Emission:**

- Select frequencies are emitted when excited molecules return to ground state
- Initial excitation occurs by irradiation or rxn
- Analytical techniques: Fluorescence and Chemiluminescence

Figure 1

Absorbance-Based Techniques

- Direct absorption spectroscopy:

- $A = \ln(I_0/I) = \sigma L N$

- Longer pathlength Higher sensitivity

- Mulipath cells:

- Pathlength = 0.5 – 100 m

- Lose power due to mirrors

- Cavity based methods:

- Pathlength = 1 – 10 km

- Expensive mirrors and pulsed laser

- Long distance measurements:

- Pathlength = 100 m – 1 km

- In situ measurements

- Poor spatial resolution

Multipass White cell. *FP&P*

Cavity ring down cell. *FP&P*

Emission-Based Techniques

- **Chemiluminescence:** detect photons emitted by electronically excited products of a reaction

- For detection of NO, add excess O₃ to the air stream.
- This reaction can be used to detect either O₃ or NO.

- **Fluorescence:** detect photons emitted by molecules excited with a laser or UV-lamp

- NO, SO₂, NO₂ are some of the molecules that have large fluorescence quantum yields.

Mass Spectrometry

1. A small sample is ionized, usually to cations by loss of an electron. **The Ion Source**
2. The ions are sorted and separated according to their mass and charge. **The Mass Analyzer**
3. The separated ions are then measured, and the results displayed on a computer. **The Detector**

Electron impact ionization

Soft Ionization Event

Hard Ionization Event

NET:

Figure 13-3 Electron ionization accompanied by different degrees of excitation of the molecular ion. Soft ionizing events transfer little excess energy to the ionized molecule, which is observed intact. Harder collisions also occur and give rise to the fragment ions frequently seen in EI mass spectra.

Mass spectrum

Graph of ion intensity versus mass-to-charge (m/z) ratio

Chemical Ionization MS (CIMS)

- Gaseous atoms of the sample are ionized by collisions with ions produced by electron bombardment of an excess reagent gas – many uses exploited in recent times (acetate, I^- , H_3O^+ , ...)
- Schemes developed for detection of PAN, OH, HO₂, NH₃, VOCs (PTR-MS).....
- Most common – positive ions, but negative ions are used (e.g., PAN CIMS) with analytes containing very electronegative atoms

Proton Transfer Reaction (PTR)-MS for Fast Response VOC measurements

- **Alcohols:** methanol
- **Aldehydes:** formaldehyde, acetaldehyde, pentanal, pentenal, 3-methyl butenal
- **Ketones:** acetone, methyl ethyl ketone, methyl vinyl ketone, methacrolein
- **NMHCs:** isoprene, benzene, toluene, C8-aromatics, C9-aromatics, C10-aromatics, terpenes
- **Others:** acetonitrile, DMS

Proton Transfer Mass Spectrometer (PTR-MS)

step 1: water vapour molecules (turquoise colour) are injected into the ion source region, where hydronium ions (H_3O^+) are generated by a hollow cathode discharge

step 2: in drift tube previously generated hydronium ions (blue colour) react with analytes (yellow colour) injected directly into drift tube; as a result of proton transfer reaction, analytes are in ionized form (green colour)

step 3: the ions are separated in mass analyzer according to their mass to charge ratio (m/z), and transferred to detector for their identification

Proton Transfer Mass Spectrometer (PTR-MS)

Proton Transfer Mass Spectrometer (PTR-TOF-MS)

High resolution (HR) mass spectrum

Both ions have nominal m/z of 55, but exact masses allow discrimination

High resolution (HR) mass spectrum

Ions have same nominal m/z of 71, but exact masses allow discrimination

Example of data

From Koss et al., AMTD, 2017

a)

CIMS Iodide adduct measurements
in SE US

Lee et al., 2014, ES&T

b)

$C_2H_2O_3I^-$ = glyoxylic acid

$C_3H_6O_2I^-$ = hydroxyacetone or
Propionic acid

Combination techniques – e.g., GC-FID, GC-MS

- Complex Matrix – or multiple species with similar characteristics
- Separate and then detect

Trace Organic Gas Analyzer (TOGA)

GC – MS selected ion chromatogram

D. Riemer operating TOGA on GV aircraft

Examples of instruments

NOAA Ozone Photometer

NCAR Fast Ozone (Chemiluminescence)

NO/NO_2 measurement

Cavity Ring-Down Spectroscopy (CRDS)

CO , CO_2 , CH_4 , N_2O , H_2O , isotopes

Schematic of CRDS Analyzer

NO_3 , N_2O_5 ...Cavity Ring-Down

N. L. Wagner et al.: Diode laser-based cavity ring-down instrument for NO_3 , N_2O_5 , NO, NO_2 and O_3

1229

Fig. 1. Instrument schematic. The upper part framed in red shows the NO_3 and N_2O_5 measurement. The lower part framed in blue shows the NO, NO_2 and O_3 measurement. BS denotes a beam splitter. A photo of the optical bench instrument is shown on the right.

Diode Laser (QCL) Formaldehyde

Diode Laser (QCL) Formaldehyde

Other laser based measurement

- methane,
- nitrous oxide, nitric oxide, nitrogen dioxide,
- carbon monoxide, carbon dioxide, formaldehyde,
- formic acid, ethylene, acetylene, carbonyl sulfide,
- acrolein, ammonia

Aerosol Instrumentation

Particle measurement instruments

Condensation Nucleus Counter (CN)

Particles > 5 (11) nm – depending on type of CN counter

Cloud Condensation Nucleus Counter (CCN)

Thermal gradient diffusion chamber : measures particles that activate at controlled supersaturations

Ultra High Sensitivity Aerosol Spectrometer (particle sizes)

Figure 14: Ambient-Air Distribution on a Properly Calibrated Instrument

Ultra High Sensitivity Aerosol Spectrometer (particle sizes, 60 – 1000 nm)

Figure 3: Side View of Optical Block

Single Particle Soot Photometer

Figure A3. Schematic diagram of the SP2 photometer showing the basic optics and laser-induced incandescence and scattering detectors.

Tandem Differential Mobility Analyzer (TDMA)

	Volatility ($\sim 100 \text{ }^{\circ}\text{C}$)	Hygroscopicity
Sulfuric acid	Volatile	Very hygroscopic
Sulfates (Totally or partially neutralized by ammonia)	Non-volatile	Very hygroscopic
Organic carbons	Volatile	Not or only slightly hygroscopic

Aerosol HR – TOF - MS

Aerosol composition over Los Angeles

LA Basin Aerosol Mass Fraction

Example of aerosol MS analysis

Positive Matrix Factorization (PMF): Time Series & Mass Spectra

*Airborne Research Campaign
Examples*

SENEX Campaign (NOAA)

- *Southeast Nexus - Studying the Interactions between Natural and Anthropogenic Emissions at the Nexus of Climate Change and Air Quality*
 - *Understanding emissions of aerosols, ozone/aerosol precursors, greenhouse gases*
 - *Understanding formation mechanisms of secondary organic aerosol*
 - *Determine composition of aerosols*
 - *Determine climate relevant properties of aerosols*
 - *Quantify CH₄ and VOC emissions from shale gas operations*

SENEX aircraft flight tracks

C. Warneke et al.: Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign

Aircraft parameters		Technique	Units	Uncertainty
Aircraft position	GPS latitude	°	±16 m	
	GPS longitude	°	±16 m	
	GPS altitude	m	±16 m	
	pressure altitude	m	±10 m	
	radar altitude above ground	m	±15 m or 1–2 %	
Aircraft meteorology	ambient temperature	°C	±0.5 °C	
	dew point temperature	°C	±0.5 °C	
	TDL dew point temperature	°C	5 %	
	H ₂ O mixing ratio*	g kg ⁻¹	5 %	
	potential temperature	°K	±0.5 K	
	relative humidity*	%	±5 %	
	static pressure	mb	±2.2 mb	
	vertical wind speed	m s ⁻¹	±0.5 m s ⁻¹	
	wind direction	°	5°	
	wind speed	m s ⁻¹	1 m s ⁻¹	
Aircraft miscella- neous	attack angle	°	±0.2°	
	cabin pressure	mb	N/A	
	ground speed	m s ⁻¹	±3.4 m s ⁻¹	
	heading	°	±0.5°	
	pitch angle	°	±0.05°	
	roll angle	°	±0.05°	
	slip angle	°	±0.2°	
	true air speed	m s ⁻¹	±0.5 m s ⁻¹	

Aerosol Instrumentation

Measurement	Name/technique	Accuracy	Precision	Sample Interval
Low turbulence inlet	LTI: decelerating inlet to provide sample air to aerosol instruments in fuselage	N/A	N/A	N/A
Size distributions fine (0.004–1 μm) and coarse (1–8.3 μm)	parallel CPCs, and white and laser light scattering			1s
Cloud condensation nuclei (CCN) spectra from 0.1–0.8 % supersaturation	CCN: Continuous-flow streamwise thermal-gradient CCN counter with scanning flow CCN analysis (SCFA)	Number: 10 % super-saturation: 0.04 %	10 CCN cm^{-3}	60 s
Eight-cell optical extinction (dry 405, 532, 662 nm, 70 and 90 % RH 532 nm, thermodenuded 405 and 662 nm)	CRD: Cavity ring-down aerosol extinction spectrometer	< 2 %	10 % 0.1 Mm^{-1}	1 s
Five-cell optical absorption (dry 405, 532, 662 nm, thermodenuded 405 and 662 nm)	PAS: Photoacoustic Absorption Spectrometer	10 %	1 Mm^{-1}	1 s

Aerosol Instrumentation – cont'd

Measurement	Name/technique	Accuracy	Precision	Sample Interval
Refractory BC mass content of individual particles	SP2: Single-Particle Soot Photometer with laser-induced incandescence	30 %	0.5 fg (0.08 μm mass-equiv. diameter with 2 g cc^{-1} density)	1 s
Non-refractory, submicron sulfate, nitrate, ammonium, organic, and chloride mass concentrations	AMS: Aerosol Mass Spectrometer	50 %	0.05, 0.07, 0.24, 0.36, and $0.05 \mu\text{g sm}^{-3}$ (study average)	10 s
Cloud particle size distribution (0.6–50 μm) (3–50 μm) (50–6000 μm)	Cloud probes: Laser light forward and back scattering laser light forward scattering droplet imaging probe			1 s

Gas phase instrumentation

Measurement	Technique	Accuracy	Precision or Detec. Limit	Sample Interva
CH ₄	wavelength-scanned cavity	0.07 ppm	0.11 ppm	1 s
CO ₂	ring-down absorption spectroscopy	1 ppb	0.4 ppb	
CO	vacuum UV resonance fluorescence	5 %	0.5 ppb	1 s
SO ₂	pulsed UV fluorescence	20 %	250 ppt	1 s
NO	Gas phase chemiluminescence	3 %	10 ppt	1 s
NO ₂		4 %	30 ppt	
NO _y		12 %	40 ppt	
O ₃		2 %	15 ppt	
Various VOCs	PTR-MS: proton transfer reaction mass spectrometer using H ₃ O ⁺ as reagent ion	25 %	depending on signal and species	1 s every 17 s
Hydrocarbons, oxygenated VOCs	iWAS: whole air sampler with immediate GC-MS analysis	12–20 %	4–7 ppt ppt ppt	72/flight (3–8 s)
HNO ₃	HNO ₃ -CIMS: chemical ionization mass spectrometer with I [−] as reagent ion	20 % + 50 ppt	25 ppt	1 s
HCOOH		20 % + 120 ppt	40 ppt	
HONO		40 % + 30 ppt	25 ppt	

Gas phase instrumentation

NH ₃	NH ₃ -CIMS: chemical ionization mass spectrometer with protonated acetone dimers as reagent ion	25 % + (0.02–0.5) ppb (depending on flight)	0.02–0.07 ppb (depending on flight)	1 s
PAN	PAN-CIMS: chemical ionization mass spectrometry	0.04–0.05 ppb	0.01 ppb	2 s
PPN		0.04–0.1 ppb	0.003 ppb	
APAN	with I [–] as reagent ion	0.01–0.02 ppb	0.006 ppb	
C ₁ NO ₂		0.01–0.02 ppb	0.02 ppb	
Various oxygenated VOCs	UW HR-ToF-CIMS: chemical ionization mass spectrometer with I [–] as reagent ion	50 %	depending on signal and species	1 s
C ₁ NO ₂				
N ₂ O ₅				
Alkyl nitrates				
glyoxal	ACES: cavity enhanced absorption spectroscopy	5.8 %	34 pptv	10 s
NO ₂		5 %	80 ppt	5 s
NO	CRDS: cavity ring-down absorption spectrometer	5 %	1 ppbv	1 s
NO ₂		5 %	0.2 ppbv	
O ₃		10 %	0.2 ppbv	
NO ₃		20 %	3 pptv	
N ₂ O ₅		12 %	3 pptv	
HCHO	In Situ Airborne Formaldehyde (ISAF): laser induced fluorescence	10 %	36 ppt	1 s
<i>j</i> NO ₂ and <i>j</i> O ₁ D	<i>j</i> -heads: filter radiometers	10 %		1 s

Table 2. Summary of CH₄ Emissions From Study Regions

Region	Haynesville	Western Arkoma	Fayetteville	Marcellus
CH ₄ flux (10 ⁷ g/h)	8.0 ± 2.7	3.3 ± 1.5	3.9 ± 1.8	1.5 ± 0.6
CH ₄ from livestock and non-oil-and-gas point sources (10 ⁷ g/h)	0.6	0.7	0.4	0.2
Natural gas production in June 2013 (10 ⁷ m ³ /d)	20 ± 3	0.9	7.6	18 ± 1
CH ₄ in natural gas	(90 ± 7)%	(95 ± 5)%	(94 ± 5)%	(96 ± 3)%
Natural gas loss rate	1.0–2.1%	6–20%	1.0–2.8%	0.18–0.41%

What is the Importance of Biomass Burning Emissions?

Agricultural burning in the Mississippi Delta

From J. DeGouw, et al. presentation

APAN vs. PAN (all flights)
Patrick Veres, Jim Roberts

HONO in nighttime fire plumes (Andy Neuman)

Emissions from Production of Natural Gas

Studied basins have lower leak rates than basins in Utah and Colorado
 Peischl et al. [JGR 2015]

CONTRAST – Convective Transport of Reactive Species in the Tropics

- Characterize chemical composition and O_3 photochemical budget at level of convective outflow in the Western Pacific during the deep convective season
- Evaluate the budget of organic and inorganic halogens in the tropical TTL
- Investigate transport pathways from the ocean surface to the tropopause via coordinated flights of the GV (CONTRAST), BAe-146 (CAST), Global Hawk (ATTREX) & data from ozone sondes (SOWER & CAST) and water sondes (ATTREX & SOWER)

Synergistic sampling of ATTREX (GH), CONTRAST (GV) and CAST (BAe-146) Aircraft

Drawing: SPARC, D. Pendlebury

AWAS/GWAS Sample Locations

NSF/NCAR Research Aircraft Gulfstream V (GV)

the GV Payload for the CONTRAST Campaign

CONTRAST – Payload (1)

Chemistry	Investigator	GH	BAe-146
NO _x	NO, NO ₂	Weinheimer/NCAR ACD	NO YES
Fast Ozone	O ₃	Weinheimer/NCAR ACD	YES YES
VUV Carbon Monoxide	CO	Campos/NCAR ACD	YES YES
Picarro	CO ₂ , CH ₄	Campos/NCAR ACD	YES YES
TOGA	NMHCs, OVOCs	Apel, Hornbrook/NCAR ACD & Riemer / U Miami	NO YES
GT-CIMS	BrO, BrCl, HOBr, ClO	Huey/GIT	NO YES
AMAX	BrO, IO, H ₂ CO (remote)	Volkamer/CU	YES NO
HAIS Advanced Whole Air Sampler (AWAS)	Trace gases	Atlas/U.Miami	YES YES
In Situ Airborne Formaldehyde (ISAF)	H ₂ CO	Hanisco/ NASA GSFC	NO NO
Inorganic Br (BRITE)	Br* (Σ BrO + Br)	Atlas/U.Miami & Flocke/ACD	NO NO
Radiation			
HARP	Spectral Actinic Flux	Hall /NCAR ACD	YES YES

CONTRAST – Payload (2)

State parameters		
State Parameters	Lat/Lon, P, T, 3D wind	Jensen/NCAR RAF
RAF Digital Video	Four Direction views	Jensen/NCAR RAF
Micrometeorology		
CDP Cloud Probe	2 - 50 um, water droplets, ice crystals	Jensen/NCAR RAF
2D-C Precipitation Probe	25-1600 um, ice, water	Jensen/NCAR RAF
UHSAS Aerosol Probe	0.075 - 1 um, aerosols	Jensen/NCAR RAF
WCN CN Counter	0.01 - 3 um, aerosols	Jensen/NCAR RAF
VCSEL Laser Hygrometer	water vapor	Jensen/NCAR RAF

How does convection redistribute short-lived species in the tropics?

How well are the vertical distributions of halogenated species represented in the CCMs ?

What controls the ozone structure in the tropics?

- Is the ozone enhancement produced by the dry intrusions or biomass burning?

- bi-modal structure: 20 and 60 ppbv
- Enhancement was often observed as filaments anti-correlated with water vapor
- Also observed positive correlation of ozone-HCN

*The Studies of Emissions and Atmospheric Composition, Clouds
and Climate Coupling by Regional Surveys
SEAC⁴RS*

Table 1. Major Goals of SEAC⁴RS

	Goal
1.	To determine how pollutant emissions are redistributed via deep convection throughout the troposphere.
2.	To determine the evolution of gases and aerosols in deep convective outflow and the implications for chemistry in the upper troposphere and lower stratosphere.
3.	To identify the influences and feedbacks of aerosol particles from anthropogenic pollution and biomass burning on meteorology and climate through changes in the atmospheric heat budget or through microphysical changes in clouds.
4.	To understand how anthropogenic and biogenic emissions interact to control tropospheric ozone and aerosol concentrations.
5.	To serve as a calibration/validation test bed for future satellite instruments and missions.

*The Studies of Emissions and Atmospheric Composition, Clouds
and Climate Coupling by Regional Surveys
SEAC⁴RS*

SEAC4RS DC-8 Payload

DC-8 Instruments

Table 4. DC-8 Instruments

Name	Technique	Primary Investigator	Products
4-STAR	Sky scanning spectrometer	P. Russell, NASA Ames	Aerosol optical thickness, water vapor column
AOP	Aerosol optical properties	C. Brock, NOAA	Aerosol extinction, absorption, particle size
APR-2	Dual frequency Doppler Radar	S. Tanelli, JPL	Reflectivity, precipitation, vertical velocity
AVOCET	IR spectroscopy of CO ₂	A. Beyersdorf, NASA LaRC	CO ₂
BBR	Broadband radiometers	A. Bucholtz, NRL	Solar and IR radiative fluxes and heating rates
CAFS	UV-Vis actinic flux	S. Hall, UCAR	Spectrally resolved actinic flux and photolysis frequencies
CAMS	Compact atmospheric multispecies spectrometer	A. Fried, UCAR	CH ₂ O
CIT-CIMS	Chemical ionization mass spectrometer	P. Wennberg, CalTech	HNO ₃ , organic acids
DACOM	Tunable diode laser spectroscopy	G. Diskin, NASA LaRC	CO, CH ₄ , N ₂ O
DASH SP	Differential aerosol sizing and hygroscopicity	A. Sorooshian, UAz	Hygroscopic growth factor
DIAL-HSRL	UV lidar	J. Hair, NASA LaRC	O ₃ , aerosol and cloud heights, aerosol extinction
DLH	Open path TDL	G. Diskin, NASA LaRC	H ₂ O
GT-CIMS	Chemical ionization mass spectrometer	G. Huey, Georgia Tech	SO ₂ , HCl, HO ₂ NO ₂ , PAN
HD-SP2	Laser-induced incandescence	R. Gao, NOAA	Black carbon mass, size, coating thickness, hygroscopicity
HR-AMS	Aerosol mass spectrometer	J. Jimenez, U. Colorado	Aerosol composition
ISAF	Laser-induced fluorescence	T. Hanisco, GSFC	CH ₂ O
LARGE	Aerosol spectrometers	B. Anderson, NASA LaRC	Particle size distribution, optical properties, CCN
MMS	Meteorological measurements system	P. Bui, NASA ARC	Temperature, pressure, winds
NO _y , O ₃	Chemiluminescence	T. Ryerson, NOAA	NO _x , NO _y , O ₃
PALMS	Single particle composition mass spectrometer	K. Froyd, NOAA	Particle composition
PI Neph	Polarized imaging nephelometer	J. Vanderlei Martins, UMBC	Aerosol scattering phase matrix
PT-RMS	Proton transfer mass spectrometry	A. Wisthaler, U. Innsbruck	Volatile organic compounds
SAGA	Mist CHAMBER, ion chromatograph, filter	J. Dibb, U. New Hampshire	HNO ₃ , sulfate, soluble ions
SPEC	Cloud particle probes	P. Lawson, SPEC	Four-particle probes covering sizes from 1 μm to 10 cm
SSFR	Solar spectral flux radiometer	S. Schmidt, U. Colorado	Solar spectral fluxes and heating rates
TD-LIF	Thermal dissociation laser induced fluorescence	R. Cohen, U. C. Berkeley	NO ₂ , alkyl nitrates, peroxy nitrates, CH ₃ O ₂ NO ₂
WAS	Whole air sampler	D. Blake, U. C. Irvine	>70 trace gases
DC-8 CAM	Forward and nadir cameras	Rick Shetter, U. N. Dakota	Nadir and forward video

SEAC4RS ER-2 Payload

In situ
 Remote

ER-2 Instruments

Table 5. ER-2 Instruments

Name	Technique	Primary Investigator	Products
AirMSPI	Multiangle spectropolarimetric imaging	D. Diner, JPL	Multiangle polarization images
ALIAS	Laser infrared absorption spectrometry	L. Christensen, JPL	CO, N ₂ O
BBR	Broadband radiometers	A. Bucholtz, NRL	Solar and IR radiative fluxes and heating rates
CPL	Lidar	M. McGill, NASA Goddard	Attenuated backscatter
eMAS	Multispectral scanning MODIS simulator	S. Platnick, NASA Goddard	Spectral images
FCDP	Optical particle sizing	P. Lawson, Spec Inc.	Particle size 1–50 µm
H2Ov	Lyman α + tunable diode laser	J. Anderson, Harvard	Water vapor
JLH	Tunable diode laser	R. Herman, JPL	Water vapor
MMS	Meteorological measurements system	P. Bui, NASA ARC	Temperature, pressure
MTP	Microwave radiometry	M.J. Mahoney, JPL	Temperature profiles
PCRS	Cavity ringdown spectrometer	S. Wofsy, Harvard	CO ₂ , CH ₄ , CO
RSP	Scanning polarimeter	B. Cairns, GISS	Multiangle polarization
SSFR	Solar spectral flux radiometer	S. Schmidt, U. Colorado	Solar spectral fluxes and heating rates
UAS-O3	UV photometry	R.-S. Gao, NOAA	Ozone
WAS	Whole air sampling	E. Atlas, U. Miami	>50 trace gases

Liao et al., 2015, Airborne measurements of organosulfates over the continental U.S.

*Shingler et al.,
Airborne characterization of subsaturated aerosol hygroscopicity
and dry refractive index from the surface to 6.5 km during the
SEAC4RS campaign*

New Missions???

Plan the next mission!

- Identify research problem and questions
- Create mission acronym (important!)
- Use one (or more) aircraft
 - Ground-based measurements possible, too.
- Select payload to address science questions
- Suggest mission plan
 - Nominal flight patterns
- Present 5-minute summary
 - Explain rationale and plan

Potential problems

- Role of emissions from the IGP on ozone and aerosol formation in the ASM
- Identification of sources and transport pathways of pollutants in the ASM
- Impact of primary and secondary aerosols on clouds and precipitation
- Impact of VSL halogen compounds from marine or anthropogenic origin on ozone in the UT/LS